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Review the Fokker-Planck equation for Compton scattering
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Fokker-Planck Kompaneets equation
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Exact scattering kernel R
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Moments of the scattering kernel

Symmetrized scattering kernel r ��� � � �
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Use of these moments in the Fokker-Planck method leads to Kompaneets’ equation.
Methods for obtaining accurate relativistic moments have been given by Prasad, et al.
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Green’s function of a Liouville differential equation

Liouville equation
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Moments of the Liouville Green’s function

These integrals can be derived —
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The Liouville operator that matches Compton

scattering moments for kT mc2

Comparing the Green’s function moments to the small-T Compton moments suggests
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Expression for G in terms of special functions

The differential equation obtained for G is a variation of the confluent hy-
pergeometric equation. With the notation
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M and U are Kummer (confluent hypergeometric) functions
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Numerical solutions for the Green’s function

The Liouville equation for G can be put into a conservative finite difference form with the

method of Larsen, Levermore, Pomraning and Sanderson (1985). It reduces to a problem

of finding the inverse of a tri-diagonal matrix; the matrix is almost identical to the one

obtained by Larsen, et al.
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The tri-diagonal matrix U that yields H by inversion
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Sample calculations of R

Here for h� 0 � 1 keV, kT

1 keV. A is the Green’s function
method, B is an analytic approxi-
mation, and C is exact.

� �
�

�
�

�
�

�
� �� �

�
�

�
�

�
�

� �� �
�

�
�

�
�

�
� ���
���

���
���

���
���

���
���

���
���

�� ��
� ���

� ���
 "!"#$!  "!"#$%  "!"&$!  "!"&$%  "'"!$!  "'"!$%  "'"'$!  "'"'$%  "'$("!

)* + ,-./ + 0- 1 + 0 � +* 0- 1* 0 � +� , 23 3 456 78 9: ;3 <=> ?@A ?B CD C CB 46 CB E 9F E 5G EH C C6 CB B C CI CH H J J6 J CH C JI CB� 9: 98 KLM ; 9 E E5 2= G 25 , 7 <=> ?@A ?B C D C CB 46 CB H C C6 CB B C CI CH ?H C6 JBH H JI CB�N 45 OP 9Q R 4= 9 ;L ST <=> ?@A ?B C D C CB 46 CB E 9F E 5G EH C C6 CB B C CI CH H C C6 ? ? ? ? ?I CHU VWX Y WZ U YX[ Y U[ \ U

12



More sample calculations of R — at larger

For h� 10 keV, kT 1 keV. A
is the Green’s function method, B
is an analytic approximation, and
C is exact.
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More sample calculations of R – at large T and

For h� 100 keV, kT 50 keV.
A is the Green’s function method,
B is an analytic approximation,
and C is exact.
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Advantages of the Green’s function method

The approximate value of the scattering kernel can be found by inverting a tri-
diagonal matrix – a few FLOPS per matrix element

The action of the kernel on a radiation spectrum can be found by solving a tri-
diagonal system, and the kernel need not be found

The solution of an implicit equation for the spectrum is another tri-diagonal system

The last two operations are much faster than any full matrix calculations — the same
as Fokker-Planck solutions

By using the Prasad, et al., diffusion coefficient the results can be made more accu-
rate for large T
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